UNIVERSITY OF LONDON GENERAL CERTIFICATE OF EDUCATION EXAMINATION

SUMMER 1970

Advanced Lerel

MATHEMATICS 1

Puri Mathemitics

Aniswer EIGHT questions.

1. (i) If the roots of the quadratic equation $x^{2}+b x+c=0$ are a and β, find the quadratic equation whose roots are $a+\frac{1}{\beta}$ and $\beta+\frac{1}{\alpha}$.
(ii) Find the possible values of x if
(2) $)^{20+t^{7}}=3$ (2) -1
2. (i) (a) If $z=3+4 i$, express $z+\frac{25}{z}$ in its simplest form.
(b) If $z=x+y i$, find the real part and the imaginary part of $z+\frac{1}{z}$.
Find the locus of points in the Argand diagram for which the imaginary part of $z+\frac{1}{z}$ is zero.
(ii) State de Moivre's theorem for a positive integral index, and use it to show that

$$
\tan 5 \theta=\frac{5 t-10 t^{8}+t^{5}}{1-10 t^{5}+5 t^{6}}
$$

where $t=\tan \theta$.
3. (i) Find the number of ways in which a committee of 4 can be chosen from 6 boys and 6 girls
(a) if it must contain 2 boys and 2 girls, ,
(b) if it must contain at least 1 boy and 1 girl,
(c) if either the oldest boy or the oldest girl must be included, but not both.
(ii) If n is an integer, use the method of induction to prove that

$$
1^{3}+2^{2}+\ldots+n^{8}-\frac{1 n^{2}(n+1)^{2}}{}
$$

4. Expand $\sqrt{ }(1-4 x)$ and $1-2 x(1-p x)^{7}$ in ascending powers of x. If these expansions are identical up to the term in x_{i}^{3}, find p and \dot{q}. State for these values of p and q the common set of values of x for which both expansions are valid.
By putting $x=\frac{1}{8}$, show that the cube root of 2 is approximately $3-\sqrt{3}$ and by putting $x=\frac{1}{2}$ obtain an approximation for the cube root of 3 .
5. A circle with centre P and radius r touches externally both the circles $x^{2}+y^{2}=4$ and $x^{3}+y^{2}-6 x+8=0$. Prove that the x-coordinate of P is $\ddagger r+2$, and that P lies on the curve

$$
y^{4}=8(x-1)(x-2)
$$

6. A variable line $y=m x+c$ cuts the fixed parabola $y^{*}=4 a x$ in two points P and Q. Show that the coordinates of M, the mid-point of $P Q$, are

$$
\left(\frac{2 a-m c}{m^{2}}, \frac{2 a}{m}\right)
$$

Find one equation satisfied by the coordinates of M in each of the following cases:
(a) if the line has fixed gradient m,
(b) if the line passes through the fixed point $(0,-a)$.
7. (i) Find, in radians, the general solution of the equation

$$
4 \sin \theta=\sec \theta
$$

(ii) If $\sin \theta+\sin 2 \theta+\sin 3 \theta+\sin 4 \theta=0$, show that θ is either a multiple of $\frac{1}{2} \pi$ or a multiple of $\frac{1}{5} \pi$.
8. (i) If y is inversely proportional to $(x+1)$, show that
(a) $(x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}+y=0$,
(b) $y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}$.
(ii) $B C$ is a chord of a circle with centre O and radius a. The mid-point of $B C$ is M, and $M O$ is extended to A, where $*$ $O A-2 a$. Find, to the nearest minute, the angle $B O M$ so that the triangle $A B C$ has maximum area.
9. (i) If $a \neq 0$ and $\int_{0}^{a} x(x-1) \mathrm{d} x=0$, find a and evaluate

$$
\int_{0}^{a} x^{2}(x-1)^{2} \mathrm{~d} x
$$

(ii) Prove that $\int_{\pi / 6}^{\pi / 3} \sin 4 x \sin x \mathrm{~d} x=(3 \sqrt{3}-7) / 60$.
10. (i) Find the area of the finite figure bounded by the curve $y=x(2-x)$ and the line $y=k x$, where $0<k<2$.
(ii) The finite area in the first quadrant bounded by the curves $y=4 / x, y=4 / x^{2}$, and the line $x=2$ is rotated once about the x-axis. Find the volume of the solid of revolution described.

