UNIVERSITY OF LONDON
 GENERAL CERTIFICATE OF EDUCATION EXAMINATION

SUMMER 1970

Advanced Level

MATHEMATICS 2

Puxi Mathematics

Three hours

Answer EIGHT questions.

1. (i) Find the set of real values of x for which the series

$$
\sum_{r=1}^{\infty}(-1)^{r}\left(\frac{1+x}{1+x^{2}}\right)^{r}
$$

is convergent:
Find the value of x for which the sum to infinity of this series is a maximum.
(ii) Find the sum of the series $\sum_{r=2}^{n} \frac{1}{r\left(r^{2}-1\right)}$.
2. (i) Form the cubic equation whose roots are the squares of the roots of the equation $x^{2}+a x^{2}+b x+c=0$.
(ii) When the polynomial $x^{3}+a x^{2}+b x+c$ is divided by $(x-1),(x-2),(x-3)$ the remainders are $24,60,120$ respectively. Solve the equation $x^{3}+a x^{2}+b x+c=0$.
3. (i) Express $\ln (1-x)$ and $\ln (2+x)$ as series of ascending powers of x up to and including the terms in x^{3}. Show that $\ln \left(2-x-x^{2}\right)$
$=\ln 2-\frac{x}{2}-\frac{5 x^{2}}{8}-\frac{7 x^{3}}{24}-\cdots-\frac{x^{n}}{n}\left[1+\left(-\frac{1}{2}\right)^{n}\right]$
and state the range of values of x for which this infinite series converges.
(ii) Show that the nth term of the series

$$
\frac{2}{3!}+\frac{4}{5!}+\frac{6}{7!}+\ldots+\frac{2 n}{(2 n+1)!}+\ldots
$$

can be expressed in the form $\frac{1}{(2 n)!}-\frac{1}{(2 n+1)!}$, and hence show that the sum of the infinite series is $1 / \mathrm{e}$.
4. (i) If $z=\cos \theta+i \sin \theta$, show that

$$
z^{n}+z^{n}=2 \cos n \theta \text { and } z^{n}-z^{n}=2 i \sin n \theta .
$$

Hence deduce that $\cos ^{8} \theta+\sin ^{8} \theta=\frac{1}{8}(3 \cos 4 \theta+5)$.
(ii) Given that $1, \omega, \omega^{2}$ are the cube roots of unity, prove that

$$
\begin{aligned}
(a+b+c)\left(a+\omega b+\omega^{2} c\right)\left(a+\omega^{2} b\right. & +\omega c) \\
& =a^{3}+b^{3}+c^{3}-3 a b c .
\end{aligned}
$$

5. A tetrahedron has one vertex at the origin O and the other three vertices at the points $A(0,2,2), B(1,2,3), C(3,1,6)$. Find
(a) the equation of the plane $A B C$,
(b) the coordinates of the foot of the perpendicular from O to the plane $A B C$,
(c) the volume of the tetrahedron.
6. Show that the equation of the normal at $P(c t, c / t)$ to the rectangular hyperbola $x y=c^{2}$ is $t^{3} x-t y=c\left(t^{4}-1\right)$.

The tangent at P meets the x-axis at A and the y-axis at B and the normal at P meets the y-axis at C. If M is the mid-point of $A C$ find the equation of the locus of M. Show that the area of the triangle $A B C$ is four times the area of the triangle $A M P$.
7. The tangent at $P(a \cos \theta, b \sin \theta)$ to the ellipse

$$
b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}
$$

cuts the y-axis at Q. The normal at P is parallel to the line joining Q to one focus S^{\prime}. If S is the other focus, show that $P S$ is parallel to the y-axis.
8. (i) If $y=\tan ^{-1}\left(\frac{1-x}{1+x}\right)$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in its simplest form.
(ii) If $s=a \mathrm{e}^{-b t} \sin c t$, where a, b, c are constants, show that

$$
\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}+2 b \frac{\mathrm{~d} s}{\mathrm{~d} t}+\left(b^{2}+c^{2}\right) s=0
$$

(iii) Two particles P and Q are at rest, each at a distance k metres from the origin, P being on the x-axis and Q on the y-axis. At the same instant each starts moving towards the origin, P with constant speed $k \mathrm{~m} / \mathrm{s}$ and Q with constant acceleration $k \mathrm{~m} / \mathrm{s}^{2}$. Find the rate at which the distance between P and Q is decreasing half a second later.
9. (i) Find (a) $\int x^{2} \sin x \mathrm{~d} x$, (b) $\int \frac{\mathrm{d} x}{x^{2} \sqrt{\left(9+x^{2}\right)}}$.
(ii) The tangent at any point P on the curve $x=a \cos ^{2} \theta$, $y=a \sin ^{3} \theta$, meets the axes at A and B. The normal at P meets the axes at C and D. Show that $A B$ is constant in length and that when $\theta=\frac{1}{8} \pi, C D=2 A B$.
10. Sketch the curve $y=\frac{x^{2}+1}{x^{2}-1}$.

Show that the x-coordinate of the centroid of the area bounded by the curve, the x-axis and the lines $x=2$ and $x=3$, is approximately $2 \cdot 48$.

